Exam Analysis on Manifolds

WIANVAR-07.2015-2016.2A

April 4th, 2016, 9:00-12:00 hrs.

This exam consists of three assignments. You get 10 points for free.

Assignment 1. (30 pt.)

Let $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$, and let $i: M \to \mathbb{R}^3$ be the inclusion map.

- 1. (8 pt.) Construct an atlas on M such that:
 - (i) M becomes a two-dimensional C[∞]-manifold;
 - (ii) the inclusion map i is a C^{∞} -map.

Prove that this atlas satisfies both (i) and (ii).

- 2. (8 pt.) Let σ be the one-form on \mathbb{R}^3 given by $\sigma = x \, dx + y \, dy$. Prove that $i^*\sigma = 0$.
- 3. (7 pt.) Let $\Omega = dx \wedge dy \wedge dz$ be the volume form on \mathbb{R}^3 , and let X be the vector field on \mathbb{R}^3 given by

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}.$$

Prove that $\iota_X \Omega = x dy \wedge dz - y dx \wedge dz$.

(Recall that $\iota_X\Omega$ is the two-form given by $\iota_X\Omega(Y,Z)=\Omega(X,Y,Z)$.)

4. (7 pt.) Prove that $i^*(\iota_X\Omega)$ is a nowhere zero two-form on M.

Assignment 2. (30 pt.)

Let M be a compact connected 2n-dimensional manifold without boundary, and let ω be a two-form on M.

In the following assignments, $\omega_k = \underbrace{\omega \wedge \dots \wedge \omega}_{k \text{ factors}}$, for integers $k \geq 1$.

- 1. (8 pt.) Prove: if ω is closed, then for $k \ge 1$, the 2k-form ω_k is also closed.
- 2. (8 pt.) Prove: if ω is exact, then for $k \ge 1$, the 2k-form ω_k is also exact.

In the following two assignments, assume that ω_n is a nowhere zero 2n-form on M.

- 3. (8 pt.) Prove that ω is not exact.
- 4. (6 pt.) Prove that M is not contractible to a point.

Assignment 3 on next page

Assignment 3. (30 pt.)

Let $M = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$. We turn M into a Riemannian two-manifold by equipping it with the inner product $\langle \cdot, \cdot \rangle$, defined by

$$\langle v, w \rangle = \frac{v \cdot w}{h(x, y)^2},$$

for $\nu, w \in T_pM$, where $h: M \to \mathbb{R}$ is a positive C^2 -function on M, and $\nu \cdot w$ is the standard inner product of ν and w on \mathbb{R}^2 .

- 1. (5 pt.) Prove that there is a differentiable function $f: M \to \mathbb{R}$ such that $\{F_1, F_2\}$, with $F_1 = f \frac{\partial}{\partial x}$ and $F_2 = f \frac{\partial}{\partial y}$, is an (orthonormal) moving frame on M.
- 2. (6 pt.) Determine the coframe $\{\vartheta_1, \vartheta_2\}$ of this moving frame (i.e., express these one-forms in terms of dx and dy).
- 3. (10 pt.) Determine the connection form ω_{12} of the moving frame $\{F_1, F_2\}$.
- 4. (9 pt.) Determine the Gaussian curvature K(x,y) at $(x,y) \in M$, and prove that K=-1 for $h(x,y)=\frac{1}{2}(1-x^2-y^2)$.